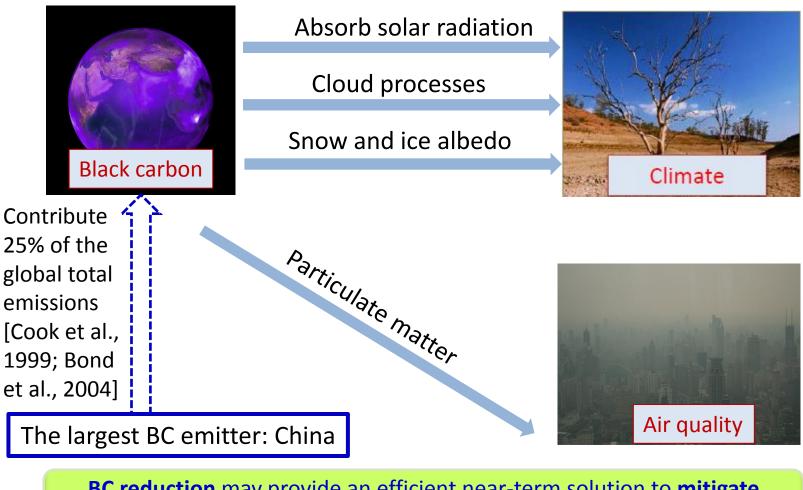
Soot2016_program

Impacts of meteorological parameters and emissions on decadal and interannual variations of black carbon in China for 1980-2010

Yu-Hao Mao, Hong Liao*, Yongming Han, and Junji Cao

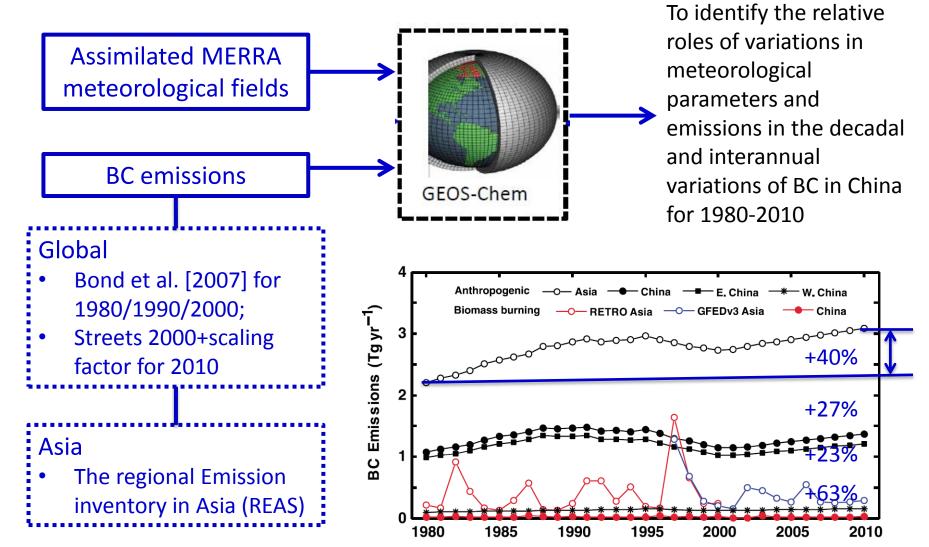


Outline

Motivation

- Methods
- Simulated BC and Model Evaluation
- Simulated Decadal Trends of BC
- Simulated Interannual Variations of BC
- Direct Radiative Forcing of BC
- Summary and Conclusions

Environmental Effects of Black Carbon

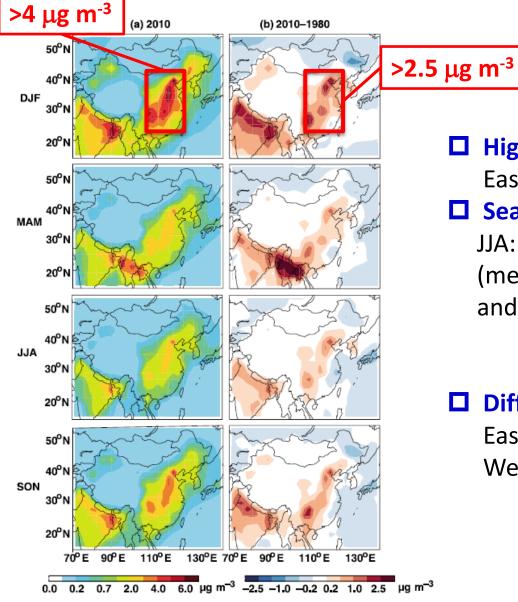

BC reduction may provide an efficient near-term solution to **mitigate global warming** and to **improve air quality** simultaneously.

Objectives of This work

To quantify the decadal and interannual variations of surface concentrations and tropospheric column burdens of BC in China for 1980-2010

To quantify the roles of variations in meteorological parameters, anthropogenic and biomass burning emissions in the variations.

Methods


Simulations

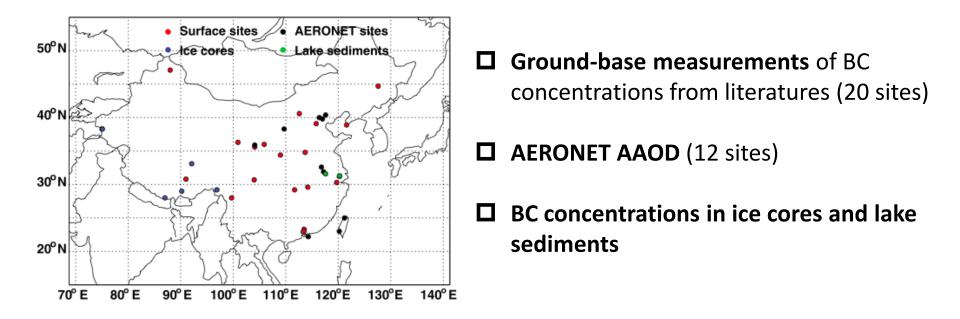
	GEOS-Chem Sin	nulations of BC	(1 year spin-up)		
Model		Meteorologic	Em	issions	
Experiments		al Parameters	Anthropogenic	Biomass Burning	
VALL	Standard	1980—2010	1980—2010	1980—2010	
VMET	met	1980—2010	2010	2010	
VEMIS	Emission(an+bb)	2010	1980—2010	1980—2010	
VEMISAN	Emission(an)	2010	1980—2010	Not included	
VEMISBB	Emission(bb)	2010	Not included	1980—2010	
VNOC	Emission(non-China)	1980—2010	1980—2010	1980—2010	
			Turn off emissions in China		
VAN2X		1980—2010	1980—2010	1980—2010	
			Doubled in Asia		

CEOC Change Cinculations of DC (1 more only ma)

Compared to a recent top-down estimates of BC emissions in China [Fu et al., 2012], emissions in China from REAS (this study) are biased low by a factor of 2.

Simulated Distribution of BC

High concentration regions: East China

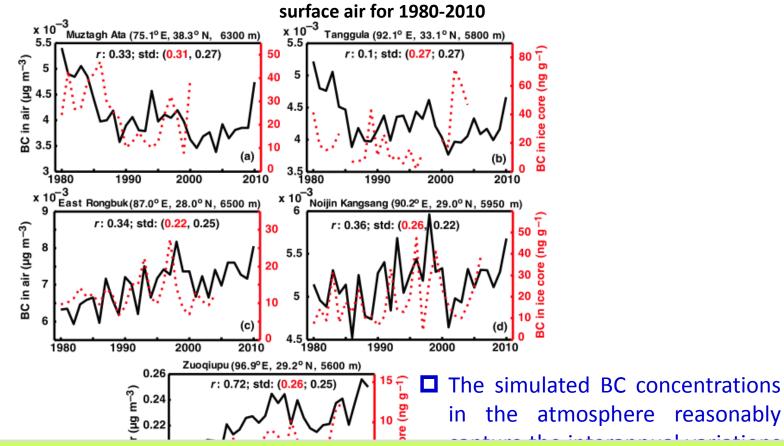

Seasonal variation:

JJA: 0.67 μ g m⁻³/DJF: 1.77 μ g m⁻³ (meteorological parameters and emissions from eg. heating)

Differences (2010-1980):

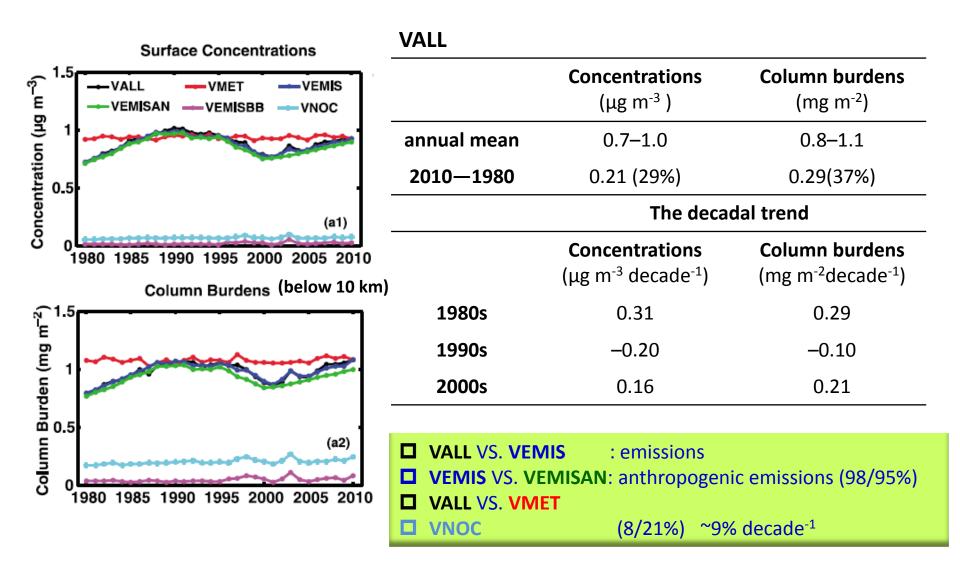
Eastern China : 0.29 μ g m⁻³ (24%) Western China: 0.12 μ g m⁻³ (66%)

Evaluation of Simulated BC Concentrations and AAOD

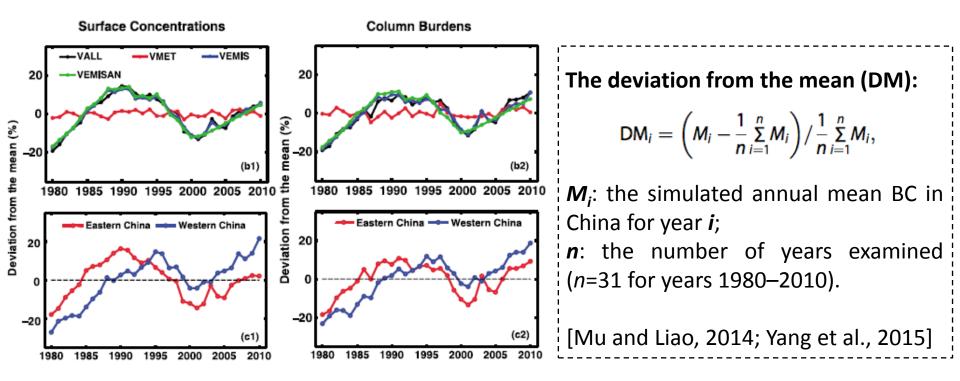


□ Simulated BC concentrations show NMBs of −37% at remote sites, −49% at rural sites, and −79% at urban sites (VALL). Improved in VAN2X.

□ Simulated annual mean BC AAOD in simulation VALL(VAN2X) show NMB values of - 77% (-57%) at urban sites and -50% (-4%) at remote sites.

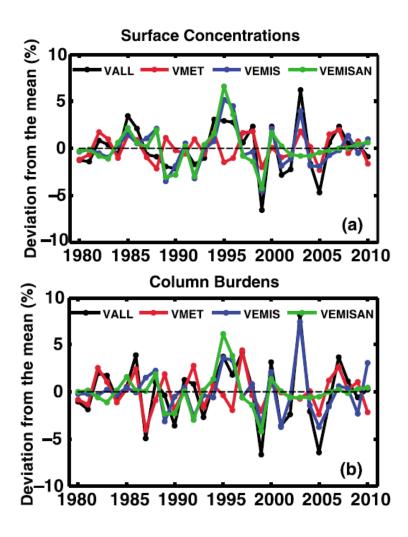

Comparisons With Measurements in Ice Cores

Observed annual BC concentrations (red) in ice cores in Tibetan Plateau [Xu et al., 2009] and simulated annual mean BC concentrations (black) in the atmosphere at 300 hPa and in

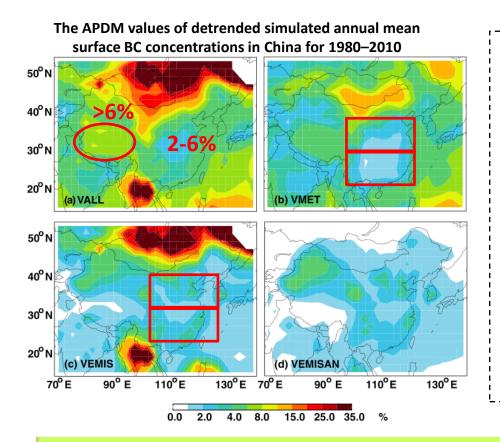


The evaluations of model results prove the ability of the GEOS-Chem model to reasonably capture the decadal and interannual variations of BC in China.

Simulated Decadal Trends of BC



Simulated Decadal Trends of BC


 VALL VS. VEMIS VS. VMET : emissions
 VEMIS VS. VEMISAN : anthropogenic emissions
 Eastern China : 1980(0.52), 1990(-0.38), 2000(0.25) μg m⁻³ decade⁻¹ Western China: 1980(0.07), 1990(-0.09), 2000(0.06) μg m⁻³ decade⁻¹

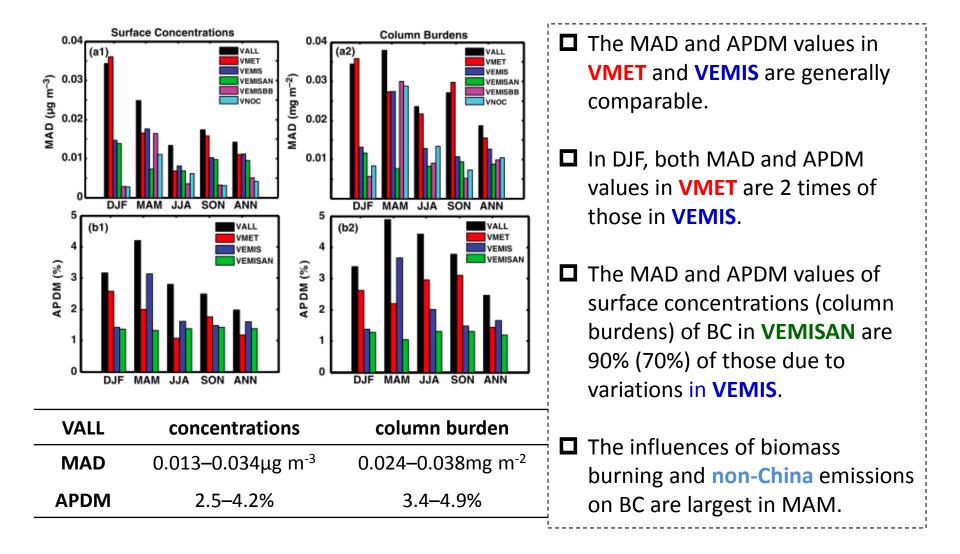
Simulated Interannual Variations of BC

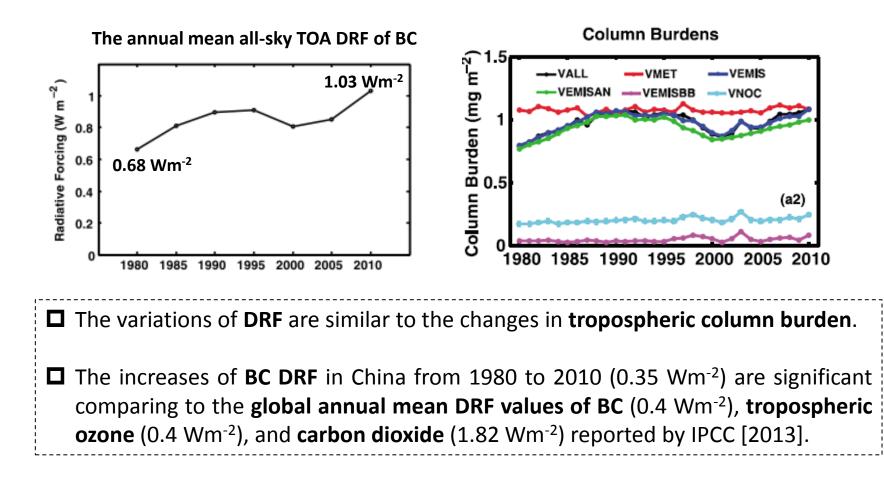
- The peaks and troughs in deviations in VALL simulation are consistent with those in either VMET or VEMIS.
- The DM values in VMET are larger in column burdens of BC than in surface concentrations.
- The interannual variations of BC in VEMISAN are similar to those in VEMIS (except in 2003).

Simulated Interannual Variations of BC

The mean absolute deviation (MAD):

$$\mathsf{MAD} = \frac{1}{n} \sum_{i=1}^{n} \left| M_i - \frac{1}{n} \sum_{i=1}^{n} M_i \right|$$


The absolute percent departure from the mean (APDM):


$$\mathsf{APDM} = 100\% \times \mathsf{MAD} / \left(\frac{1}{n} \sum_{i=1}^{n} M_i\right)$$

M_i: the detrended simulated annual mean BC in China for year *i*; *n*: the number of years examined.
[Mu and Liao, 2014; Yang et al., 2015]

The **MAD** and **APDM** (or **DM**) represent the interannual variations of BC in terms of absolute value and percentage, respectively, averaged over the 31 years for 1980–2010 in the present study.

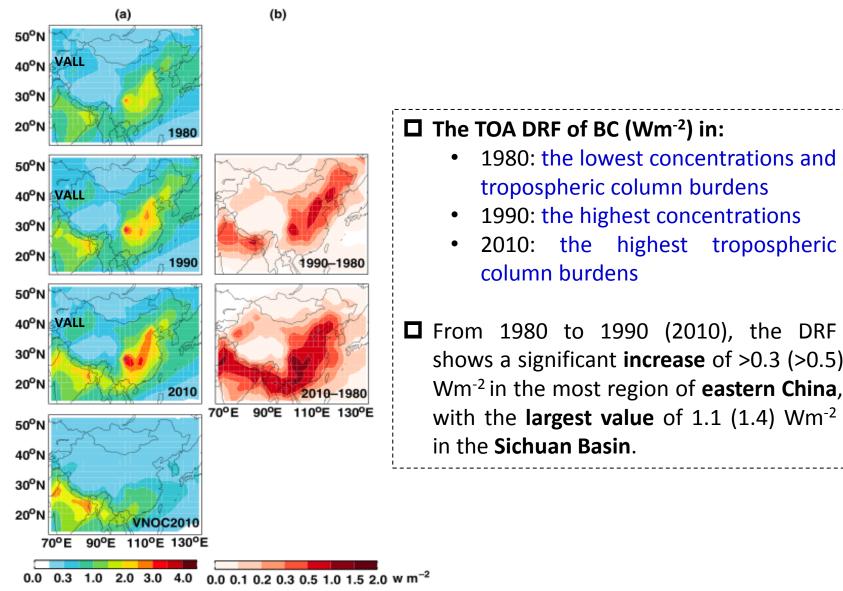
Simulated Interannual Variations of BC

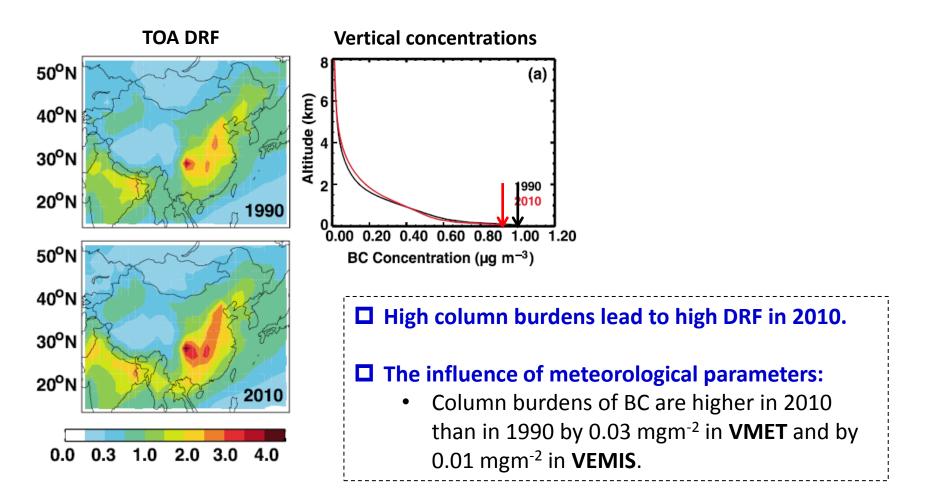
1980: the lowest concentrations and

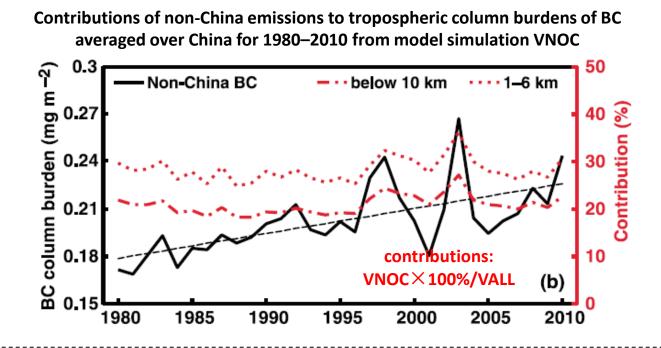
2010: the highest tropospheric

tropospheric column burdens

column burdens


in the Sichuan Basin.


1990: the highest concentrations


shows a significant **increase** of >0.3 (>0.5)

Wm⁻² in the most region of **eastern China**,

with the **largest value** of $1.1 (1.4) \text{ Wm}^{-2}$

The influence of non-China emissions:

- Contributions to column burden: 18–27% below 10 km and 25–36% at 1–6 km.
- Account for 0.32 Wm⁻² (31%) of simulated all-sky TOA DRF of BC averaged over China in 2010
- From 1990 to 2010, the contributions to column burden of increase by 0.04 mgm⁻² below 10 km and by 0.03mgm⁻² at 1–6 km.

Summary and Conclusions

The decadal variations:

- The decadal variations of simulated annual mean surface concentrations (column burdens) of BC averaged over China were 0.31 μgm⁻³decade⁻¹ (0.29mgm⁻²decade⁻¹) in the 1980s, 0.20 (0.10) in the 1990s, and 0.16 (0.21) in the 2000s.
- The changes in **emissions** were the major driver of the decadal trends of BC.

The interannual variations:

- The interannual variations were 20% to 15% (20% to 11%) for DM, 0.068 μgm⁻³ (0.069 mgm⁻²) for MAD, and 7.7% (7.1%) for APDM.
- The interannual variations were dependent on variations of **both emissions and** the meteorological parameters such as the transport.

More details about this work:

Mao, Y.-H., H. Liao, Y. Han, and J. Cao (2016), Impacts of meteorological parameters and emissions on decadal and interannual variations of black carbon in China for 1980–2010, J. Geophys. Res. Atmos., 121, 1822–1843, doi:10.1002/2015JD024019.

Thanks very much for your attention!

Evaluation of Simulated BC concentrations and AAOD

Table 2. Observed and Simulated Annual Mean Surface BC Concentrations ($\mu g m^{-3}$) at 20 Sites in China^a

	Latitude	Longitude	Altitude		BC Concentrations			
Site	(°N)	(°E)	(m)	Observation Period	Observation	Model	NMB ^e (%)	Reference ^d
				Remote				
Akdala	47.1	88.0	562	2004.8-2005.3	0.35	0.23 ^b (0.43 ^c)	-34 (23)	[1]
Zhuzhang	28.0	99.7	3583	2004.8-2005.2	0.34	0.19 (0.38)	-44 (12)	
Muztagh Ata	38.3	75.0	4500	2005	0.055	0.078 (0.15)	42 (173)	[2]
Nam Co	30.8	91.0	4730	2006.7-2007.1	0.082	0.064 (0.12)	-22 (46)	[3]
Waliguan	36.3	100.9	3616	2000-2010	0.30	0.15 (0.29)	-50 (-3)	[4]
				Rural				
Wusumu	40.6	112.6	1221	2005.9; 2006.12006.7; 2007.5	3.10	1.22 (2.41)	-61 (-22)	[5]
Gaolanshan	36.0	105.9	2075	2006-2007	3.77	0.98 (1.95)	-74 (-48)	[6]
Jinsha	29.6	114.2	424	2006-2007	2.98	2.00 (3.97)	-33 (33)	
Linan	30.3	119.7	149	2006-2007	4,24	1.73 (3.44)	-59 (-19)	
Longfengshan	44.7	127.6	337	2006-2007	2.25	1.48 (2.92)	-34 (30)	
Taiyangshan	29.2	111.7	571	2006-2007	2.61	2.00 (3.99)	-23 (53)	
Lanzhou	35.6	104.1	1966	2007.1-2009.8	1.59	1.10 (2.19)	-31 (38)	[7]
Maofengshan	23.3	113.5	550	2009	2.43	1.12 (2.19)	-54 (-10)	[8]
				Urban				
Chengdu	30.7	104.0	496	2006-2007	10.8	2.12 (4.22)	-80 (-61)	[6]
Dalian	38.9	121.6	92	2006-2007	5.3	1.48 (2.93)	-72 (-45)	
Gucheng	39.1	115.8	15	2006-2007	10.6	2.04 (4.06)	-81 (-62)	
Panyu	22.9	113.3	5	2006-2007	7.5	0.98 (1.92)	-87 (-74)	
Zhengzhou	34.8	113.7	99	2006-2007	9.4	2.70 (6.93)	-71 (-26)	
Xian	34.4	109.0	363	2006-2007	12.1	2.04 (4.07)	-83 (-66)	
Dongguan	23.0	113.5	30	2009	5.3	1.42 (2.79)	-73 (-47)	[7]

^aModel results are from simulations VALL and VAN2X. See text and Table 1 for the definitions of model simulations.

^bResults are from model simulation VALL.

Results are from model simulation VAN2X.

^dSources are the following: [1] Qu et al. [2008]; [2] Cao et al. [2009]; [3] Ming et al. [2010]; [4] Zhao et al. [2014]; [5] Han et al. [2008]; [6] Zhang et al. [2012]; [7] Zhang et al. [2011]; and [8] Chen et al. [2013].

^eNormalized mean biases (NMB) = 100% × (Model – Observation)/Observation, where Model and Observation are the simulated and observed BC concentrations, respectively.

Evaluation of Simulated BC concentrations and AAOD

					BC AAOD			
Site	Latitude(°N)	Longitude(°E)	Altitude(m)	Time	Observation	Model	NMB ^d (%)	
			Ru	ral				
Taihu	31.2	120.2	20	2006-2010	0.054	0.021 ^b (0.041 ^c)	-61 (-24)	
SACOL	35.9	104.1	1965	2006-2010	0.031	0.010 (0.019)	-68 (-39)	
Xinglong	40.4	117.6	970	2006-2010	0.037	0.027 (0.053)	-27 (43)	
Shouxian	32.6	116.8	22	2008	0.038	0.021 (0.040)	-45 (5)	
Hefei	31.9	117.2	36	2008	0.047	0.026 (0.050)	-45 (6)	
Xianghe	39.8	117.0	36	2005-2010	0.058	0.027 (0.052)	-53 (-10)	
			Urb	an				
Beijing	40.0	116.4	92	2002-2010	0.065	0.026 (0.050)	-60 (-23)	
Yulin	38.3	109.7	1080	2002	0.061	0.010 (0.019)	-84 (-69)	
HK_PolyU	22.3	114.2	30	2006-2010	0.062	0.008 (0.017)	-87 (-73)	
HK_Hok_Tsui	22.2	114.3	80	2008-2010	0.045	0.010 (0.018)	-78 (-60)	
Chen-kung	23.0	120.2	50	2004-2010	0.025	0.006 (0.010)	-76 (-60)	
NCU	25.0	121.2	171	2002-2010	0.030	0.005 (0.009)	-83 (-70)	

Table 3. AERONET-Derived and GEOS-Chem-Simulated Annual Mean BC Absorption Aerosol Optical Depth (AAOD) at 12 AERONET Sites in China^a

^aModel results are from simulations VALL and VAN2X. See text and Table 1 for the definitions of model simulations.

^bResults are from model simulation VALL.

Results are from model simulation VAN2X.

^dNormalized mean biases (NMB) = 100% × (Model – Observation)/Observation, where Model and Observation are the simulated and derived BC AAOD, respectively.