2016 BC workshop

Heterogeneous Process Studies on the Formation of Secondary Aerosol

Maofa Ge

Institute of Chemistry Chinese Academy of Sciences June-27-2016

Aerosol Heterogeneous Chemistry

ICCAS Platform

Physical & Atmospheric chemistry

ICCAS Platform aerosol : size/components/optics

Raman

EI-MS DRIFT-IR Flow Tube; Knudsen cell

Gas-solid/liquid reaction, kinetics cavity ring down spectrometry: aerosol extinction

H-TDMA

Gas-solid kinetics: Mechanism

(1) 当
$$k_{-1} < < k_2$$
 时, $k = k_1$; 250-230K
 $E_a = RT^2 \frac{d \ln k}{d(\frac{1}{T})} = RT^2 \frac{d \ln k_1}{d(\frac{1}{T})} = E_{a1}$

The apparent activation energy : $14.63 \pm 0.20 \text{ kJ/mol}$

(2)
$$\stackrel{\text{\tiny \underline{k}}}{=} k_2 << k_{-1}$$
 $\stackrel{\text{\tiny \underline{k}}_1 k_2}{=} = K k_2$; 298-250K
 $E_a = RT^2 \frac{d \ln k}{d(\frac{1}{T})} = RT^2 \frac{d \ln (K k_2)}{d(\frac{1}{T})} = RT^2 \frac{d \ln (K)}{d(\frac{1}{T})} + RT^2 \frac{d \ln (k_2)}{d(\frac{1}{T})} = \Delta H_{ads} + E_{a2}$

The balance between the two limiting cases can be used to interpret the turning point on the rate of sulfate formation.

Gas-solid kinetics: Mechanism

Organic acid on mineral dust

Heterogeneous process: Important

Atmospheric lifetime

_	dust	ОН		
НСООН	8-13h	86 days		
CH ₃ COOH	4-5h	46days		
$\tau = \frac{4}{\gamma < \nu > SA} \qquad \text{SA}=150 \ \mu\text{m}^2 \ \text{cm}^{-3}$				

Gas-liquid Kinetics

Gas-liquid Kinetics

First-order rate *k*_{obs}:

$$\ln(S/S_0) = -k_{obs}L/v_{ave}$$

Diffusion-limited rate k_{diff} : $k_{diff} = 3.66D_i / r^2$

Surface rate constant k:

$$1/k = 1/k_{obs} - 1/k_{diff}$$

Reactive uptake coefficient:

$$\gamma = \frac{4kV}{wA}$$

Gas-liquid Kinetics

Epoxide

• The uptake of two epoxides under different pressures :

	H ₂ SO ₄	P(Torr)	$\gamma \pm 1\sigma$ (×10 ⁻⁵)
isoprene epoxide		180.0	1.89 ± 0.14
	рн=3 —	46.0	1.87 ± 0.09
butadiene diepoxide	p11_7	131.0	8.78 ± 0.21
	рн=/ —	65.5	8.49 ± 0.15

• Using rotating cylinder with inner radius of 8 mm for isoprene epoxide

	<i>r</i> = 12.5 mm		<i>r</i> = 8.0 mm			
H_2SO_4	P (Torr)	k_{diff}	$\gamma \pm 1\sigma$ (×10 ⁻⁴)	P (Torr)	$k_{di\!f\!f}$	$\gamma \pm 1\sigma$ (×10 ⁻⁴)
pH=3	180.0	0.976	0.189 ± 0.014	46.0	18.354	0.189 ± 0.006
1 wt %	48.2	3.510	2.78 ± 0.083	26.2	26.734	2.81 ± 0.057
10 wt %	27.1	10.336	7.99 ± 0.116	25.2	28.901	8.14 ± 0.180

Role of H_2O_2 : MBO + H_2SO_4 MBO: 2-methyl-3-buten-2-ol H_2SO_4 **OH** disappear nittance (%) **C=C** increase reactant GC: 5.778s (5.77s) ransmittance (%) \blacktriangleright H₂SO₄-1wt%H₂O₂ OH disappear, HC=O 40wt%H₂SO₄ formation _{GC:} 5.264s (5.273s) ransmittance (%) **FTIR** ະດ Н Wavenumber (cm⁻¹)

formation aldehyde and ketone; and polymerization; SVOC and **SOA formation**

IR/GC/MS; with **H**₂**O**₂:

Role of H_2O_2 : MBO + H_2SO_4

Main route and product

New insights

New insight

Smog chamber simulation

Real atmospheric conditions

Chamber 70L , 3000 L, 2X(5m³) FEP Teflon film

* Reaction rate
* Mechanism

M Ge*, Atmos Environ, 2007, 2009, 2010, 2011, 2012, 2013

Atmospheric lifetime(EVE/PVE) T=1/(k_x[X]), x=OH, NO₃, O₃, Cl

	concn/mol	NIST National Institute of Standards and Technology			
	Cm Kinetics Database	Author(s): Du, L.;Xu, Y.F.;Ge, M.F.;Jia, Title: Rate constant of the gas phase react	L ; Yao, L ; Wang, W.G. ion of dimethyl sulfide $(\mathrm{CH}_3\mathrm{SCH}_3)$ with ozone		
ОН	9.7×10 Simple Reaction Search	Volume: 436 Page(s): 36 - 40 Year: 2007 Reference true: Lournel		NIST National Institute of Standards and Technology	1
NO ₃	7.4×1C Search Reaction Database	Squib: 2007DU/XU36-4 Reaction: (CH ₃)2S + O Kinetics	Author(s): Du, L.;Xu, Y.F.;Ge, M.F.;Jia, L.;Wang, G.C.;Wang, D.X. Title: Determination of rate constants for ozone reactions with acetylene under	atmospheric conditions	'n
03	7.4×10 Bibliographic Database	Reaction order: 2 Temperature: 301 K Pressure: 1.01E5 Pa	Journal: Acta Chim. Sin. Volume: 64 Barrich: 2122 2127		
CI	5.0 × 10 Set Unit Preferences	Rate expression: 1.04x. Smple Reaction Category: Experiment Data type: Absolute valu Search Pressure dependence: ?	Page(s): 2155 - 2157 Year: 2006 Reference type: Journal article	e	ôh
	Concn/mol Help Cither Databases	Experimental procedure: Search Reaction Excitation technique: Ti Time resolution: By end Database Analytical technique: V: Comments: Reaction ratt Search large excess of DMS to det important for the loss of DD Batabase	Squit: 2000DUX2135-2157 Reaction: $C_2H_2 + O_3 \rightarrow$ Products Reaction order: 2 Temperature: 288 K Pressure: 1.01E5 Pa		
ОН	9.7 ×1	Set Unit Preferences	Category: Experiment Data type: Absolute value measured directly	4	h
NO ₃	7.4×10 ⁶	Feedback	Experimental procedure: Static or low flow - Data taken vs time Excitation technique: Discharge Time resolution: In real time	В	h
03	7.4×10 ¹¹	Rate Our Products and Services	Analytical technique: Gas chromatography View full bibliographic record.		1
CI	5.0×10 ³	4	.3 ×10 ⁻¹⁰	129.2	2h

ICCAS-TRC (twin-reactor chamber)

Smog chamber with various instruments for gas and particle measurements

Cavity ring down spectroscopy

CRDS consists of two highly reflective concave mirrors with a reflectively of 99.995%

The extinction coefficient is computed by comparing the decay time(τ) of a pulse laser trapped in the resonator both with and without aerosol

Advantages

@immune to shot-to-shot :variations of the laser intensity

@measuring the absolute extinction of aerosol sample ; without instrument calibration

@high sensitivity

@long effective path length

Ammonium nitrate formation

ICCAS-TRC : SOA formation

Fig a; low-NOx experiment : 200 ppb m-xylene, 5 ppm H₂O₂

Low-NOx experiments: H_2O_2 was used as the OH precursor. The background NOx level in the chamber : <1 ppb, the initial concentration of H_2O_2 : 1–5 ppm.

High-NOx : NO₂ was introduced from a 50 ppm standard gas cylinder.

Dependence of the extinction efficiencies of the SOA particles on the surface mean diameter at a wavelength of 532 nm and the retrieved RIs (a)low-NOx (b) high-NOx experiments

The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease.

SOA

RIs of the different SOA particles: comparison between experimental data & model values. The commonly used model values for the RIs of organic aerosols are generally higher than the experimental data for the SOAs formed from VOCs, which may cause the overestimation of direct radiative forcing of organic particles to a certain extent.

1, The RIs of the BTEX SOAs are closely related to the initial NOx concentration, with different aromatics displaying different trends.

For the benzene and toluene SOAs, the RI value increases as the NOx level rises, whereas for the ethylbenzene and m-xylene SOAs, the RI value decreases correspondingly. This result is caused by the different molecular structures and the RO_2 + NO pathway that occurs under the high-NOx condition.

2, The dependence of the RI value on the initial hydrocarbon and oxidant concentrations was also investigated, revealing that the initial concentrations of these reagents have little influence on the optical properties of the SOA.

3, For gas-phase oxidation with no seed particles, the BTEX SOAs have no obvious absorption at 532 nm. However, the SOA particles formed under other conditions may absorb light in the visible range, further studies should be performed.

- **1 Smog chamber experiments SOA formation and extinction properties**
- 2 Develop new techniques CIMS etc
- 3 BC

Aerosol heterogeneous photochemistry

Acknowledgements

Dr W. Wang, Dr. L. Du, Dr. S. Tong, Dr. L. Wang, Dr. L. Wu, Dr. Z. Liu, Dr. Q Liu, Dr. K Li,

Fund: National Natural Science Foundation(NSFC) Chinese Academy of Sciences(CAS),

http://gemaofa.iccas.ac.cn